SRTM DTM PROCESSING

1. OpenDEM: SRTM DTM Processing

This Howto explains how to compute an approximately Digital Terrain Model from the SRTM dataset and OSM data land-use/-cover classes for correction. The test dataset covers the whole area of Europe.

There are many ways to achieve this goal. I would prefer to do this all with PostGIS 2.0, but I was not successful. If somebody could explain me how to do this I would be very pleased.

Software:

- GRASS (http://grass.osgeo.org)
- QGIS (http://www.qgis.org)
- GDAL (optional) (http://www.gdal.org)

Download data

First **Download** the original SRTM dataset. Version 2.1 is the most advanced dataset:

USGS → SRTM 3: http://dds.cr.usgs.gov/srtm/version2 1/

Make a correction of the voided areas explained in the Howto "OpenDEM: SRTM DSM Processing".

Download the OSM dataset features:

Landuse: forest Natural: wood building

highway: pedestrian highway: residential highway: living street

You could download ready to use OSM Shape Files from the Geofabrik (http://download.geofabrik.de/).

If you have a huge area like Europe it is less work to import the desired OSM Data with the program OSMOSIS. Go to the chapter "2. OpenDEM: OSM Data Processing".

Processing with QGIS

Merge the datasets with the same geometry type and correction factor:

- 1. forst & wood
- 2. pedestrian & residential & highway: living street

QGIS: Vector → Geoprocessing Tools → Union

Convert the OSM shape files into a raster image:

QGIS: Raster → Conversion → Rasterize (Vector to raster)

GRASS has also a conversion tool for vector to raster processing, but I was not able to use this for huge datasets.

Processing with GRASS

Import the raster data into GRASS.

GRASS: File \rightarrow Import raster data \rightarrow Common import formats [r.in.gdal]

Process the data with the Raster map calculator.

GRASS: Raster → Raster map calculator

Example for forest layer:

if ((isnull(poly_raster@PERMANENT)), srtm_koeln_all_cor@PERMANENT, (srtm_koeln_all_cor@PERMANENT - 7))

srtm_koeln_all_cor@PERMANENT = original SRTM data poly_raster@PERMANENT = forest OSM data

If no "NULL" Values are available you could compute them with GRASS: Raster → Develop Raster Map → Manage NULL values (r.null). Or simply use the value 0, which is OK in our case:

if(streets_81_69@PERMANENT ==0, europe_81_69@PERMANENT,(europe_81_69@PERMANENT - 7))

Do the raster calculation for every OSM layer and you are finished.

The raster calculator works only with Tif files < 2GB. You have to split the Tifs before processing when they are bigger, e.g. with gdal:

gdal translate -a srs EPSG:4326 -a ullr -11.0 81.0 41.0 34 original.tif subseted.tif

Merge the images when you are finished, e.g. with gdal_merge.py.

Of course you could also use GRASS for this concern:

Subsetting: Raster → Develop raster map → Region boundaries Mosaicing: Raster → Overlay rasters → Patch raster maps

SRTM DTM PROCESSING

2. OpenDEM: OSM Data Processing

- OSMOSIS (http://wiki.openstreetmap.org/wiki/Osmosis)
- Postgres & PostGIS (http://www.postgresql.org)
- 7Zip (http://www.7-zip.org) for WINDOWS or BUNZIP2 for LINUX
- OSM2PGSQL (http://wiki.openstreetmap.org/wiki/Osm2pgsql)

Download the latest OSM Planet file: http://planet.osm.org/

To avoid heap Space Errors tune your OSMOSIS file: http://wiki.openstreetmap.org/wiki/Osmosis/Tuning

Extract the desired data from the OSM planet file, e.g. for the forested areas (example for Windows7):

"YourPath\7-Zip\7zG.exe" e -so YourPath\planet.osm.bz2 | YourPath\osmosis.bat --rx file=""--way-key-value keyValueList="landuse.forest,natural.wood" --bounding-box top=81.0
left=-11.0 bottom=34.0 right=41.0 --used-node --write-xml
file="YourPath\planet forest.osm"

Be careful with copy & paste because of character encoding. For LINUX you have to use BUNZIP2 for the data streaming.

Do the same for the buildings and the roads.

building.yes

highway.pedestrian highway.residential highway.living street

Load the data in a PostGIS database via OSM2PGSQL (e.g.):

osm2pgsql.exe -c -s -l -d gis -U postgres -W -H localhost -P 5432 -S D:\opentopomap\osm2pgsql\default.style E:\planet_building.osm

Do the same for the buildings and the roads.

To correct unclosed polygons and other errors of the geometries use the PostGIS function ST_BUFFER with 0 as parameter (e.g.):

CREATE TABLE buildings_cor AS SELECT st_buffer(way, 0) as the_geom, osm_id from planet osm polygon;

Create a shape from the table via PGSQL2SHP (e.g.):

SRTM DTM PROCESSING

pgsql2shp.exe -k -u postgres -p 5432 gis buildings cor -f building cor.shp

PGSQL2SHP is available in your Postgres bin folder.

Now you have your Shapefile. Shapefiles have a limit of 2 GB. If your Shapefile is to big subset the dataset (e.g.):

pgsql2shp.exe -k -u postgres -p 5432 gis "SELECT (st_intersection(the_geom, GeometryFromText('POLYGON((-11.0 53.5, 41.0 53.5, 41.0 34.0, -11.0 34.0, -11.0 53.5))', 4326))),osm_id FROM buildings_cor WHERE ST_INTERSECTS (the_geom,GeometryFromText('POLYGON((-11.0 53.5, 41.0 53.5, 41.0 34.0, -11.0 34.0, -11.0 53.5))', 4326))" -f building sub.shp